ARx_Func.ag

ARXx_Func.ag

COLLABORATORS
TITLE :
ARx_Func.ag
ACTION NAME DATE SIGNATURE
WRITTEN BY August 3, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

ARx_Func.ag iii

Contents

1 ARx_Func.ag 1
1.1 ARexxGuide | Functions Reference 1
1.2 ARexxGuide | Functions Reference | ABOUT e |
1.3 ARexxGuide | Functions Reference | REXXSUPPORT.LIBRARY 2
1.4 ARexxGuide | Functions reference | INDEX to built-in & support functions 3
1.5 ARexxGuide | Functions reference (1 of 12) ICOMPARISON 4
1.6 ARexxGuide | Functions reference | Comparison (1 of 7)IABBREV 5
1.7 ARexxGuide | Functions reference | Comparison (2 of 7) ICOMPARE 6
1.8 ARexxGuide | Functions reference | Comparison 3of 7)IFIND 6
1.9 ARexxGuide | Functions reference | Comparison (4 of 7) I INDEX 7
1.10 ARexxGuide | Functions reference | Comparison (5 of 7) ILASTPOS 8
1.11 ARexxGuide | Functions reference | Comparison (6 of 7)IPOS, 8
1.12 ARexxGuide | Functions reference | Comparison (7 of 7) I VERIFY 9
1.13 ARexxGuide | Functions reference (2 of 12) | STRING MANIPULATION 10
1.14 ARexxGuide | Functions reference | String (1 of 15) ICENTER 11
1.15 ARexxGuide | Functions reference | String (2 of 15) |COMPRESS 11
1.16 ARexxGuide | Functions reference | String (3 of 15) ICOPIES 12
1.17 ARexxGuide | Functions reference | String (4 of 15) IDELSTR 12
1.18 ARexxGuide | Functions reference | String (S of 15) [INSERT 13
1.19 ARexxGuide | Functions reference | String (6 of 15) ILEFT 13
1.20 ARexxGuide | Functions reference | String (7 of 15) ILENGTH 14
1.21 ARexxGuide | Functions reference | String (8 of 15) IOVERLAY 14
1.22 ARexxGuide | Functions reference | String (9of 15) IREVERSE 15
1.23 ARexxGuide | Functions reference | String (10 of 15) IRIGHT, 15
1.24 ARexxGuide | Functions reference | String (11 of 15) ISTRIP 16
1.25 ARexxGuide | Functions reference | String (12 of 15) ISUBSTR 16
1.26 ARexxGuide | Functions reference | String (13 of 15) ITRANSLATE. 17
1.27 ARexxGuide | Functions reference | String (14 of 15) ITRIM 18
1.28 ARexxGuide | Functions reference | String (15 of 15) IUPPER 18
1.29 ARexxGuide | Functions reference | Number (9 of 9) IXRANGE 19

ARXx_Func.ag

1/19

Chapter 1

ARx_Func.ag

1.1

ARexxGuide | Functions Reference

AN AMIGAGUIDE® TO ARexx

by Robin Evans

About this section
ARexx functions:

Comparison functions

Second edition (v2.

FIND (), POS(), ABBREV(), etc.

String manipulation

LEFT(), SUBSTR(), etc.
Word manipulation WORD (), DELWORD (), etc.
Char/Num translation C2D(), X2C(), D2X() etc.
Number manipulation RANDOM (), MAX (), etc.
Informational DATE (), SHOW(), etc.
File input/output OPEN (), READLN(), SEEK(), etc.
File management DELETE (), EXISTS(), RENAME (), etc.
ARexx control ADDLIB(), PRAGMA (), etc.
Message ports OPENPORT (), WAITPKT (), GETARG(), etc.
Memory management IMPORT (), NEXT(), NULL(), etc.
Bit-wise operations BITAND (), BITCOMP (), etc.

All functions [INDEX]

Copyright © 1993,1994 Robin Evans.

This guide is shareware If you

find it useful,

1.2 ARexxGuide | Functions Reference | ABOUT

All rights reserved.

please register.

REFERENCE TO BUILT-IN AND REXXSUPPORT.LIBRARY FUNCTIONS

This section presents a reference to

built-in functions

and to the

ARXx_Func.ag

functions included in
rexxsupport.library

Each node begins with a template that shows the format of the arguments
accepted by the function. The following conventions are used:

rv = Each function is shown as part of an assignment clause to
emphasize that functions are expressions . The variable name
[rv] is used as an arbitrary abbreviation for ‘return value’.

<> A word or term surrounded by angle brackets should be replaced by
an expression. Any form of expression that returns a value of the
proper type may be used in place of this item. The replacement is
often a variable , but it could also be a literal string , a
number , an operation , or another function call

The names used for the items in each template are included as
mnemonic devices -- terms that may help the user remember what
each expression stands for. They are not otherwise significant.

Each term is explained in more detail in the note following the
template.

[1] Items enclosed in square brackets are optional. They may be
excluded when the function is called, but the commas that
separate optional items are significant. If only the second of
two optional items is included, a comma must still be used as a
placeholder for the omitted item as it is in the following:

SHOW ("P’,,’0a’x)

{} Items enclosed in curly braces and entered in uppercase are
literal values. The expression used for such an argument must
return one of the values from the list.

A bar is used to separate a list of literal values within {}
braces.

<UC> UPPERCASE characters are used to indicate literal values that may
be used as argument. The value may be entered in upper or
lowercase when the instruction is actually used. Only the first
letter of the option need be included. The value may be entered
as any type of expression

>>> Three angle-braces are used in examples to indicate what the
example would output if run from a shell. Those braces and the
following text is not part of the code and should not be

entered if the example is used.

Next: REXXSUPPORT.LIBRARY | Prev: Function ref. | Contents: Function ref.

1.3 ARexxGuide | Functions Reference | REXXSUPPORT.LIBRARY

ARx_Func.ag 3/19

Functions can be added to ARexx by means of external libraries . One
such library is included with the distribution of ARexx. Called
"rexxsupport.library’, it should be present in the user’s libs: directory

after ARexx 1s installed.

The library adds several Amiga-specific functions that are not defined as
a standard part of the REXX language. Included are memory-control
functions like ALLOCMEM() , file system functions like MAKEDIR() , and
interprocess—-communication functions like OPENPORT ()

The functions in rexxsupport.library will not automatically be available
to ARexx scripts, however. The are available only if the library is
explicitly added to the list of libraries through which ARexx searches to
find functions.

That can be done with the ADDLIB() function or with the RXLIB command
utility. Examples of loading the library are included with the description
of each of those methods.

Those who frequently run ARexx programs may find it useful to add some
libraries to the system during the startup sequence. Doing so doesn’t
take up much memory because the libraries aren’t loaded until they are
needed. It does assure that the library will be searched if one of its
functions is used in a program.

Adding the following command to the User-Startup file will add the library
name to the ARexx list, making the library available whenever it is called.

rxlib rexxsupport.library 0 -30 0

Compatibility issues:
The functions in rexxsupport.library are, by their nature, system-
specific. They are ARexx extensions to the language. All REXX
implementations are able to load external libraries, but the language
definition makes no attempt to define what can or should be included in
the libraries.

Next: Function ref. | Prev: About section | Contents: Function ref.

1.4 ARexxGuide | Functions reference | INDEX to built-in & support functions

ABBREV

ABS ADDRESS ADDLIB ALLOCMEM
ARG BADDR B2C BITAND BITCHG
BITCLR BITCOMP BITOR BITSET BITTST
BITXOR C2B C2D C2X

CENTER

CLOSE CLOSEPORT

COMPARE

COMPRESS

COPIES

ARXx_Func.ag

4/19

EXISTS

FREEMEM
GETPKT

MAKEDIR
OFFSET

READLN

SHOWLIST
STORAGE

TIME

TYPEPKT

WORD
WRITELN

D2C
DELETE

DELSTR
DELWORD
EXPORT
FIND
FORBID
FREESPACE
GETSPACE
INDEX

INSERT

LASTPOS

LEFT

LENGTH
LINES
MAX
OPEN
OVERLAY
PERMIT

POS
PRAGMA
REMLIB
REVERSE

RIGHT
SEEK
SIGN

STRIP

SUBSTR
SUBWORD
TRACE
TRANSLATE

TRIM
TRUNC

UPPER
VALUE
VERIFY
WAITPKT
WORDINDEX
X2C
XRANGE

DATATYPE

DIGITS

FORM

FUZ7Z
HASH

MIN
OPENPORT

RANDOM

RENAME

SETCLIP

SOURCELINE

SYMBOL

WORDLENGTH

DATE

EOF

GETARG
IMPORT

NEXT

RANDU
REPLY

SHOW
SPACE

WORDS

DELAY <~

ERRORTEXT

GETCLIP

NULL

READCH

SHOWDIR
STATEF

WRITECH

1.5 ARexxGuide | Functions reference (1 of 12) | COMPARISON

ARXx_Func.ag

5/19

ABBREV
(<longstring>, <shortstring>, [<length>])

COMPARE
(<stringl>, <string2>, [<padchar>])

FIND
(<haystack>, <needle>)

INDEX
(<haystack>, <needle>, [<startpos>])

LASTPOS
(<needle>, <haystack>, [<startpos>])

POS
(<needle>, <haystack>, [<startpos>])

VERIFY
(<string>, <reference>, [{/NOMATCH’ |’MATCH’}], [<startpos>])

Related functions:
BITCOMP
BITTST
DATATYPE

Also see Bit manipulation functions

Comparisons of one type or another are one of the most frequent tasks of
any program. Comparisons allow a program to branch off to different code
based on different conditions. Comparison operators give ARexx the
standard tools for matching strings, but these functions extend the power
of the operators, allowing quick checks for a substring (what Cowlishaw
so elegantly calls a 'needle’) in a string (the ’"haystack’), or for a word
or phrase within a string of words.

The external library package RexxDosSupport.library , by Hartmut Goebel,
includes functions, ParsePattern() and MatchPattern (), that use pattern-
match routines supplied by the operating system. The routines are, of
course, system-specific and non-portable but can be useful when case-
insensitive matching is needed or wild-cards must be used in a pattern.

Next: String functions | Prev: BITXOR() | Contents: Function reference

1.6 ARexxGuide | Functions reference | Comparison (1 of 7) | ABBREV

rv = ABBREV (<longstring>, <shortstring>, [<length>])
rv is boolean value

Returns 1 if <shortstring> is equal to the leading characters of
<longstring>. If <length> is specified, then <shortstring> must also be at
least that long. The comparison is case-sensitive. If <length> is not

ARXx_Func.ag

6/19

specified, an empty string will always match <longstring>.

Returns 0 if either condition is not met.

Examples:
say abbrev (’Waldorf’,’wWaldo’); >>> 1
say abbrev (’Waldorf’,’WALDO’) ; >>> 0

say abbrev (
upper (Waldorf’)

, "WALDO'); >>> 1
say abbrev (’'YES’, ’'Y’") >>> 1
say abbrev ('YES’, '7') >>> 1
say abbrev (’YES’, ’'', 1) >>> 0
Also see
COMPARE
LEFT
Technique note: Read one file, write to another
Extract file name from full spec
Data scratchpad with PUSH & QUEUE
Next: COMPARE () | Prev: Comparison func. | Contents: Comparison func.

1.7 ARexxGuide | Functions reference | Comparison (2 of 7) | COMPARE

rv = COMPARE (<stringl>, <string2>, [<padchar>])
rv is a number

The result is 0 if both strings are identical. If they aren’t, the number
returned is the position of the first character where the strings differ.

The shorter string is padded with <padchar> before the comparison.

The default pad character is a blank.

Examples:
say compare ('The first’,’The only’); >>> 5
say compare ('worldwide’,’wordwide’); >>> 4
say compare (' foo’,’f"); >>> 2
say compare (' foo’,’f",’0"); >>> 0
Also see
ABBREV
VERIFY
Next: FIND() | Prev: ABBREV() | Contents: Comparison functions

1.8 ARexxGuide | Functions reference | Comparison (3 of 7) | FIND

ARXx_Func.ag

7/19

rv = FIND (<haystack>, <needle>)
rv is a number

Locates the blank-delimited word or words <needle> within the string
<haystack> and returns the word position of the first match, or 0 if there

is no match.

The search is case sensitive.

Examples:
say find(’Tied to Godot?’,’dot’); >>> 0
say find(’Tied to Godot?’,’to’); >>> 2
Also see
INDEX
POS

WORDINDEX

Compatibility issues:
In the standard language definition, this function is not defined, but
a similar function called WORDPOS () is defined in TRL2 . It takes
arguments in the reverse order. WORDPOS () accepts an optional third
argument that specifies the word at which the search should begin.

To maintain compatibility, the following wuser function could be be
used instead of FIND() .

/+ WordPos () user function x/
WordPos:
if arg(3,’0’) | ~datatype(arg(3), ’'N’) then

return find(arg(2), arg(l))
else do
wpSub = find(subword(arg(2), arg(3)), arg(l))
if wpSub > 0 then
return arg(3) + wpSub - 1
else
return O
end

Next: INDEX() | Prev: COMPARE () | Contents: Comparison functions

1.9 ARexxGuide | Functions reference | Comparison (4 of 7) | INDEX

rv = INDEX (<haystack>,<needle>, [<startpos>])
rv is a number

The result is the character position within the string <haystack> of the
the first occurrence of the string <needle> or 0 if a match isn’t found.

If <startpos> is specified, then the search proceeds from that position in
<haystack>.

ARx_Func.ag 8/19

The search is case sensitive.

Examples:
say index (' Tied to Godot?’,’dot’); >>> 11
say index (' Tied to Godot?’,’to’); >>> 6

Also see
FIND

POS

Compatibility issues:
This function was supported in early versions of IBM’s REXX, but is no
longer included in the standard language definition. The POS () function
should be used instead.

Next: LASTPOS() | Prev: FIND() | Contents: Comparison functions

1.10 ARexxGuide | Functions reference | Comparison (5 of 7) | LASTPOS

rv = LASTPOS (<needle>, <haystack>, [<startpos>])
rv is a number

The result is the character position within the string <haystack> of the
the last occurrence of the string <needle> or 0 if a match isn’t found.

If <startpos> is specified, then the search proceeds backwards from that
position in <haystack>.

Examples:
say lastpos(’eak’,’growing weaker and weaker’); >>> 21
say lastpos(’eak’,’growing weaker and weaker’,20); >>> 10

Also see

POS
Technique note: Extract file name from full spec
WordWrap () user function
Next: POS() | Prev: INDEX() | Contents: Comparison functions

1.11 ARexxGuide | Functions reference | Comparison (6 of 7) | POS

rv = POS (<needle>, <haystack>, [<startpos>])
rv is a number

The result is the character position within the string <haystack> of the
the first occurrence of the string <needle> or 0 if a match isn’t found.

If <startpos> is specified, then the search proceeds forward from that
position in <haystack>.

ARx_Func.ag 9/19

The search is case sensitive.

Examples:
say pos (’eak’,’growing weaker and weaker’) >>> 10
say pos (’eak’,’growing weaker and weaker’,11) >>> 21

Also see

LASTPOS
VERIFY
Technique note: Extract file name from full spec
Using the clip list
Next: VERIFY() | Prev: LASTPOS() | Contents: Comparison functions

1.12 ARexxGuide | Functions reference | Comparison (7 of 7) | VERIFY

rv = VERIFY (<string>, <reference>, [’Match’], [<startpos>])
rv is a number

Checks for the presence in <string> of any characters that appear in
<reference> —-- a list of characters which may be entered in any order.

If the "MATCH’ option is omitted (or if any other value is used as an
argument), then the function returns 0 when all characters in <string>
are contained in <reference>. If a character in <string> is not
included in <reference> the return is a positive integer that indicates
the position of the first character in <string> that does not match a
character in <reference>.

The "M’ (match) option will cause the function to return the position of
the first character in <string> that matches a character in <reference>.
It returns 0 if none of the characters in <string> match a character in
<reference>.

If <startpos> is specified, the search will begin at that character
position in <string>.

Examples:
say verify (' #789-ABD’, ’1234567890ABCD—-#’) >>> 0
say verify (' #432-cfo’ "1234567890ABCD-#") >>> 6
say verify ('FileName’, ' :;*/?2#%’, 'm’) >>> 0
say verify ('’ Flle*NAME’ Tipx/2 V%7, 'm’) >>> 5
say verify ('File+«NAME’, " :;x/?‘#%’, 'm’,06) >>> 0
say verify (' t foo/file’ T/, 'm') >>> 2
say verify(’a’, ’AEIOUaelou’) >>> 0
say verify (’vowel’, ’'AEIOUaeiou’, 'm’) >>> 2
say verify (’vowel’, ’'AEIQOUaeiou’, 'm’, 3) >>> 4

Also see DATATYPE

POS
Technique note: Check unigque datatypes

ARXx_Func.ag

10/19

Divide a word at non-space char.

Next: Comparison functions | Prev: POS() | Contents: Comparison functions

1.13 ARexxGuide | Functions reference (2 of 12) | STRING MANIPULATION

CENTER
(<string>, <length>, [<padchar>])

COMPRESS
(<string>, [<list>])

COPIES
(<string>, <number>)

DELSTR
(<string>, <number>, [<length>])

INSERT
(<new string>, <old string>,<startpos>, [<length>], [<padchar>])

LEFT
(<string>, <length>, [<padchar>])

LENGTH
(<string>)

OVERLAY
(<new string>, <old string>, [<startpos>], [<length>], [<padchar>])

REVERSE
(<string>)

RIGHT
(<string>, <length>, [<padchar>])

STRIP
(<string>, [{’'B’|'L’|[’'T"}], I[<list>])

SUBSTR
(<string>, <startpos>, [<length>], [<padchar>])

TRANSLATE
(<string>, [<output table>], [<input table>], [<padchar>])

TRIM
(<string>)

UPPER
(<string>)

XRANGE
([<start>, [<end>])

ARx_Func.ag 11/19

Also see Word manipulation functions
Number manipulation functions
PARSE instruction

Nearly any change one might contemplate for a string can be made with one,
or a combination of these functions, or one of the closely-allied

word manipulation functions . They’ll cut chunks out of a string —--
LEFT (), RIGHT (), SUBSTR(), DELSTR(); or remove only certain characters —-—
STRIP (), TRIM(), COMPRESS(); or add to the string -- OVERLAY (), INSERT(),

COPIES (), CENTER(); or transform it in subtle and wonderful ways —--
TRANSLATE (), REVERSE () .

Next: Word functions | Prev: FuncList | Contents: Function reference

1.14 ARexxGuide | Functions reference | String (1 of 15) | CENTER

rv = CENTER (<string>,<length>, [<padchar>])
rv is a string

The function name may be spelled CENTRE or CENTER.
The result is a string of <length> characters with <string> centered in

it. The <padchar> is used to fill out the left and right sides of the
string. The default pad character is a blank.

Example:
say ' ['center(’Title’,20)’]"; >>> [Title]
say center (' Title’,22,'x"); >>> hxkkrkkkrkTitlerrkkhxkH*

Also see SPACE

COPIES
Next: COMPRESS () | Prev: String functions | Contents: String <«
functions

1.15 ARexxGuide | Functions reference | String (2 of 15) | COMPRESS

rv = COMPRESS (<string>, [<list>])
rv is a string

Removes any of the characters contained in <list> from <string>. The
default character for <list> is a blank, so this function will remove all
blanks if only <string> is specified.

Examples:
say compress (’$1,045",7$,%"); >>> 1045
say compress(’Call me Ismael.’); >>> CallmeIsmael.

Also see

ARx_Func.ag 12/19

TRANSLATE
STRIP
SPACE
Technique note: CountChar () user function

Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a
function of this name might be included in other REXX implementations,
there is no assurance that it will be.

Next: COPIES() | Prev: CENTER() | Contents: String functions

1.16 ARexxGuide | Functions reference | String (3 of 15) | COPIES

rv = COPIES (<string>, <number>)
rv is a string

The result is a new string composed of <string> concatenated with itself
<number> times.

Example:
say copies (’'xo’,6); >>> XOXOXOXO0XO0XO
Also see
XRANGE
CENTER
Technique note: Format a table of information
AddComma () user function
Next: DELSTR() | Prev: COMPRESS() | Contents: String functions

1.17 ARexxGuide | Functions reference | String (4 of 15) | DELSTR

rv

DELSTR (<string>, <number>, [<length>])
rv is a string

Deletes a portion of <string> of <length> characters beginning at the
<number> character position. The new string is returned. If <number> is

greater than the length of <string> then <string> is returned unchanged.

If <length> is omitted, all characters beginning at position <number> are
deleted.

Example:
say delstr (’indifference’, 3,3); >>> inference

Also see DELWORD

ARx_Func.ag 13/19

RIGHT
SUBSTR
INSERT

OVERLAY
Next: INSERT() | Prev: COPIES() | Contents: String functions

1.18 ARexxGuide | Functions reference | String (5 of 15) | INSERT

rv = INSERT (<newstr>, <oldstr>, [<startpos>], [<length>], [<padchar <
>1)

rv is a string

<newstr> 1s inserted into <oldstr> beginning at <startpos>, the
character-count position. <newstr> will be padded with <padchar> or
truncated to <length> characters.

If <startpos> is greater than the length of <oldstr> then <padchar> will
be added to the end of <oldstr> before the new string is added. If
<startpos> is 0 or is omitted, then <newstr> will be padded to <length>
and then added to the start of <oldstr>

The default length is the length of <newstr>. The default pad character is
a blank.

Example:
say insert (’always behaved like’,’TI have a pig.’,7,20)
>>> I have always behaved like a pig.

Also see
OVERLAY
DELSTR
Technique note: WordWrap () user function
Next: LEFT() | Prev: DELSTR() | Contents: String functions

1.19 ARexxGuide | Functions reference | String (6 of 15) | LEFT

rv = LEFT (<string>,<length>, [<padchar>])
rv is a string

The result is a string of <length> characters made up of the leftmost
characters in <string>. If <length> is greater than the length of
<string>, then the string returned is filled out on the right with
<padchar> -- a quick way to left-justify a string.

ARXx_Func.ag

14 /19

The default pad character is a blank.

Example:

say left ('never to stop saying’,13);

say left ('Widget’, 12)' |’
say left ('No’, 4, ’!’)

Also see

Technique note:

Determine library version number

RIGHT
SUBSTR
ABBREV
Next: LENGTH() | Prev: INSERT() | Contents:

1.20 ARexxGuide | Functions reference | String (7 of 15) | LENGTH

rv = LENGTH (<string>)
rv is a number

The result is the number of characters in <string>.

Example:

say length (’never to stop saying’);

Technique note: CountChar ()
AddComma ()
WordWrap ()

>>> never to stop

>>> Widget
>>> No!!

Formatting tables
Extract file name from full spec

String functions

>>> 20

user function
user function
user function

Check unigque datatypes

Next: OVERLAY () | Prev: LEFT() | Contents:

1.21 ARexxGuide | Functions reference | String (8 of 15) | OVERLAY

rv = OVERLAY (<newstr>,
>1)

rv is a string

Replaces the characters of <oldstr> starting at position <startpos> with
the characters of <newstr>. The default starting position is the beginning

of <oldstr>.

If <length> is not specified, all of the characters from <newstr> will be
overlaid on <oldstr>. If <length> is specified,
be truncated to that length or expanded to <length> using <padchar> to

fill out the string.

String functions

<oldstr>, [<startpos>],

then <newstr> will either

[<length>], [<padchar <«

ARx_Func.ag 15/19

The default pad character is a blank.

Examples:
say overlay(’12’, ’'abcdefg’, 3, 4, ’'x") >>> abl2xxg
say overlay (’abc’, ’712345678’, 4, 2) >>> 123ab678

say overlay(’'think of it’,,
"the less I concentrate the more certain I am’, 12)
>>> the less I think of it the more certain I am

Also see
INSERT

DELSTR
The third example above uses the comma continuation character to <
turn

two lines of text into one program line.

Next: REVERSE () | Prev: LENGTH() | Contents: String functions

1.22 ARexxGuide | Functions reference | String (9 of 15) | REVERSE

rv = REVERSE (<string>)
rv is a string

The result is <string> flipped end for end.

Example:
say reverse (' chameleon’); >>> noelemahc
Also see
LASTPOS
Technique note: Add commas to a number
Next: RIGHT () | Prev: OVERLAY() | Contents: String functions

1.23 ARexxGuide | Functions reference | String (10 of 15) | RIGHT

rv = RIGHT (<string>, <length>, [<padchar>])
rv is a string

The result is a string of <length> characters made up the rightmost
characters in <string>. If <length> is greater than the length of
<string>, then the result is filled out on the left with <padchar> -- a
quick way to right-justify a string.

The default pad character is a blank.
Example:

say right ('never to stop saying’,11l); >>> stop saying
say "$’'right (4.50, 6) >>> S 4.50

ARx_Func.ag 16/19

say ’"$’'right (123.99, 6) >>> $5123.99
say right (’Whoa’, 6, "W") >>> WWWhoa
Also see
LEFT
SUBSTR
DELSTR

Technique note: Formatting tables
Determine library version number

Next: STRIP() | Prev: REVERSE() | Contents: String functions

1.24 ARexxGuide | Functions reference | String (11 of 15) | STRIP

rv = STRIP (<string>, [{’B’|'L"|’T’}], [<list>])
rv is a string

Removes spaces (by default) or any character in <list> from the leading,
trailing, or both ends (specified by the option used as the second
argument) of <string>. The default option is ’'B’.

Example:
say ' |’strip(’ understand DR >>> |understand]|
say ' |’strip(’ understand /,L)’|’; >>> |understand
say ’|’strip(’____understand__ ',T,’_')'|’; >>> |__ understand]
say strip(’understand’,,’dnu’) >>> ersta

The examples use the abuttal concatenation operator to add the character
"|” to the beginning and end of the string returned by STRIP().

Also see
COMPRESS

TRIM
Technique note: AddComma () user function

Compatibility issues:
Standard REXX accepts only a single character where ARexx accepts a
<list> of characters to be stripped. Using a multiple-character list

will cause an error in most other implementations of the language.

Next: SUBSTR() | Prev: RIGHT() | Contents: String functions

1.25 ARexxGuide | Functions reference | String (12 of 15) | SUBSTR

rv = SUBSTR(<string>, <startpos>, [<length>], [<padchar>])
rv is a string

ARXx_Func.ag

17 /19

The result is a string of <length> characters made up the characters in
<string> beginning at <startpos>.

If <length> is not specified, then all of the string to the right of
<startpos> will be returned. If the argument is specified, the returned
string will have <length> characters, filled out, if necessary, with
<padchar>.

The default pad character is a blank.

Example:
say substr (’indifference’,3,3); >>> dif
say substr (’'No way’,4,5,’!") >>> way!!
Also see
LEFT
RIGHT
DELSTR
SUBWORD
TRUNC
Technique note: Format () user function

WordWrap () user function
Extract file name from full spec

Next: TRANSLATE() | Prev: STRIP() | Contents: String functions

1.26 ARexxGuide | Functions reference | String (13 of 15) | TRANSLATE

rv = TRANSLATE (<string>, [<output table>], [<input table>],
padchar>])
rv is a string

Any character in <string> that also appears in the <input table> is
converted to the corresponding character in the <output table> or to the
<padchar> if there isn’t a corresponding character in the <output table>.

If neither table is supplied, then the <string> is converted to upper

case, just as it would be by
UPPER (<string>)

The default pad character is a blank.

Examples:
say translate(’abcdef’, 7123456’ , ’abcdef’) >>> 123456
say translate (’abcdef’, ’7123456’, ’"defabc’) >>> 456123

(
(
say translate (’abcdef’, 71234’ , ’'defabc’,’*") >>> 4x%x123
say translate (' UNNAMABLE’, xrange(’a’,’z’), xrange('A’,’7Z"))
>>> unnamable

[< ¢«

ARx_Func.ag 18/19

Translate a string to lowercase

<string> can be translated to lowercase with the following function:

string = translate(string, ’abcdefghijklmnopgrstuvwxyz’,,
" ABCDEFGHIJKLMNOPQRSTUVWXYZ')

If one isn’t worried about incompatibility that would arise from non-ASCII
character sets, then the list of characters can be replaced by these calls
to the

XRANGE ()

function:

string = translate(string, xrange(’a’,’z’), xrange('A’, 'Z"))
The function BITOR(<string>) will also translate the alphabetic
characters in <string> to lowercase characters, but it will shift the
ASCII characters between 91 and 95 { [\] ©~ _} to characters 123 through
127.

Also see

COMPRESS
Next: TRIM() | Prev: SUBSTR() | Contents: String functions

1.27 ARexxGuide | Functions reference | String (14 of 15) | TRIM

rv = TRIM(<string>)
rv is a string

The result is <string> with the trailing blanks removed.

Example:
say ' |’trim(’ understand Y >>> | understand]
Also see
STRIP
Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a

function of this name might be included in other REXX implementations,
there is no assurance that it will be.

Next: UPPER() | Prev: TRANSLATE() | Contents: String functions

1.28 ARexxGuide | Functions reference | String (15 of 15) | UPPER

rv = UPPER(<string>)
rv is a string

The result is <string> translated to all uppercase characters.

ARx_Func.ag 19/19

Example:
say upper ('Waldorf’) >>> WALDORF

Also see
TRANSLATE
Includes note on translating a string to lowercase.

Technique note: Data scratchpad with PUSH & QUEUE
Compatibility issues:
This function is an extension that is not defined in TRL2 . Although a
function of this name might be included in other REXX implementations,
there is no assurance that it will be. The TRANSLATE (<string>)

function, without other options, does the same thing.

Next: XRANGE () | Prev: TRIM() | Contents: String functions

1.29 ARexxGuide | Functions reference | Number (9 of 9) | XRANGE

rv = XRANGE ([<start>, [<end>])
rv is a string

The result is a string comprised of all the characters between and
including <start> and <end>.

The output of the function is a character string. Use the c2x()
function, for example, to convert the output to hexadecimal number format.

Examples:

say xrange('a’,’qg’); >>> abcdefqg

say xrange(l,8); >>> 12345678

say c2x(xrange('c’x,’14"x)); >>> (Q0CODOEOF1011121314
Also see

COPIES
Technique note: Check unigque datatypes

Next: String functions | Prev: UPPER() | Contents: String functions

	ARx_Func.ag
	ARexxGuide | Functions Reference
	ARexxGuide | Functions Reference | ABOUT
	ARexxGuide | Functions Reference | REXXSUPPORT.LIBRARY
	ARexxGuide | Functions reference | INDEX to built-in & support functions
	ARexxGuide | Functions reference (1 of 12) | COMPARISON
	ARexxGuide | Functions reference | Comparison (1 of 7) | ABBREV
	ARexxGuide | Functions reference | Comparison (2 of 7) | COMPARE
	ARexxGuide | Functions reference | Comparison (3 of 7) | FIND
	ARexxGuide | Functions reference | Comparison (4 of 7) | INDEX
	ARexxGuide | Functions reference | Comparison (5 of 7) | LASTPOS
	ARexxGuide | Functions reference | Comparison (6 of 7) | POS
	ARexxGuide | Functions reference | Comparison (7 of 7) | VERIFY
	ARexxGuide | Functions reference (2 of 12) | STRING MANIPULATION
	ARexxGuide | Functions reference | String (1 of 15) | CENTER
	ARexxGuide | Functions reference | String (2 of 15) | COMPRESS
	ARexxGuide | Functions reference | String (3 of 15) | COPIES
	ARexxGuide | Functions reference | String (4 of 15) | DELSTR
	ARexxGuide | Functions reference | String (5 of 15) | INSERT
	ARexxGuide | Functions reference | String (6 of 15) | LEFT
	ARexxGuide | Functions reference | String (7 of 15) | LENGTH
	ARexxGuide | Functions reference | String (8 of 15) | OVERLAY
	ARexxGuide | Functions reference | String (9 of 15) | REVERSE
	ARexxGuide | Functions reference | String (10 of 15) | RIGHT
	ARexxGuide | Functions reference | String (11 of 15) | STRIP
	ARexxGuide | Functions reference | String (12 of 15) | SUBSTR
	ARexxGuide | Functions reference | String (13 of 15) | TRANSLATE
	ARexxGuide | Functions reference | String (14 of 15) | TRIM
	ARexxGuide | Functions reference | String (15 of 15) | UPPER
	ARexxGuide | Functions reference | Number (9 of 9) | XRANGE

